Parser

Struct Parser 

Source
pub struct Parser {
    tokens: Vec<Token>,
    error: ErrorEmitter,
}

Fields§

§tokens: Vec<Token>§error: ErrorEmitter

Implementations§

Source§

impl Parser

Source

pub fn new(filename: &str, source: Chars<'_>, tokens: Vec<Token>) -> Self

Source

pub fn parse( &self, ) -> Result<(String, u32, Vec<Constant>, Vec<Witness>, Vec<Statement>)>

Source

fn parse_header<'a>( &self, iter: &mut impl Iterator<Item = &'a Token>, ) -> Result<u32>

Parse the file header: k=N; field=“…”;

The first thing that has to be declared in the source code is the constant “k” which defines 2^k rows that the circuit needs to successfully execute.

Then we declare the field we’re working in.

Source

fn parse_sections<'a>( &self, iter: &mut impl Iterator<Item = &'a Token>, ) -> Result<(String, SectionTokens)>

Parse all sections (constant, witness, circuit) and return their tokens.

Sections “constant”, “witness”, and “circuit” are the sections we must be declaring in our source code. When we find one, we’ll take all the tokens found in the section and place them in their respective vec.

NOTE: Currently this logic depends on the fact that the sections are closed off with braces. This should be revisited later when we decide to add other lang functionality that also depends on using braces.

Source

fn absorb_section_tokens<'a>( &self, iter: &mut impl Iterator<Item = &'a Token>, dest: &mut Vec<Token>, ) -> Result<()>

Absorb tokens from iterator until a closing brace is found. Validates that no keywords are used in improper places.

Source

fn validate_section_namespace( &self, section_name: &str, tokens: &[Token], existing_ns: Option<String>, ) -> Result<String>

Validate namespace consistency across sections. All sections must use the same namespace, and it must not be a reserved name.

Source

fn build_constants(&self, tokens: &[Token]) -> Result<Vec<Constant>>

Build constants from section tokens. Validates constant types against the CONSTANT_TYPES table.

Source

fn build_witnesses(&self, tokens: &[Token]) -> Result<Vec<Witness>>

Build witnesses from section tokens.

Source

fn parse_typed_section( &self, section_name: &str, tokens: &[Token], ) -> Result<IndexMap<String, (Token, Token)>>

Parse a typed section (constant or witness) into an IndexMap. Both sections have the same structure: pairs of ‘ ’ separated by commas.

Source

fn validate_section_entry( &self, section_type: &str, name: &str, name_token: &Token, type_token: &Token, ) -> Result<()>

Common validation for constant/witness entries. Ensures name and type tokens are symbols and match expected values.

Source

fn check_section_structure(&self, section: &str, tokens: &[Token]) -> Result<()>

Routine checks on section structure. Validates that sections have proper opening/closing braces and correct element counts.

Source

fn parse_ast_circuit(&self, tokens: &[Token]) -> Result<Vec<Statement>>

Parse the circuit section into statements.

The statement layouts/syntax in the language are as follows:

C = poseidon_hash(pub_x, pub_y, value, token, serial);
| |          |                   |       |
V V          V                   V       V
variable    opcode              arg     arg
assign

                   constrain_instance(C);
                      |               |
                      V               V
                    opcode           arg

                                             inner opcode arg
                                              |
                 constrain_instance(ec_get_x(foo));
                       |                 |
                       V                 V
                    opcode          arg as opcode

In the latter, we want to support nested function calls, e.g.:

constrain_instance(ec_get_x(token_commit));

The inner call’s result would still get pushed on the heap, but it will not be accessible in any other scope.

In certain opcodes, we also support literal types, and the opcodes can return a variable type after running the operation. e.g.

one = witness_base(1);
zero = witness_base(0);

The literal type is used only in the function call’s scope, but the result is then accessible on the heap to be used by further computation.

Regarding multiple return values from opcodes, this is perhaps not necessary for the current language scope, as this is a low level representation. Note that it could be relatively easy to modify the parsing logic to support that here. For now we’ll defer it, and if at some point we decide that the language is too expressive and noisy, we’ll consider having multiple return types. It also very much depends on the type of functions/opcodes that we want to support.

Source

fn validate_statement_brackets(&self, statement: &[Token]) -> Result<()>

Validate matching brackets in a statement. Ensures parentheses and brackets are balanced and properly nested.

Source

fn parse_statement( &self, iter: &mut Peekable<Iter<'_, Token>>, ) -> Result<Statement>

Parse a single statement from tokens. Determines if this is an assignment (var = …) or a direct call (opcode(…)).

Source

fn parse_opcode_call( &self, token: &Token, iter: &mut Peekable<Iter<'_, Token>>, stmt: &mut Statement, ) -> Result<()>

Parse an opcode call and fill in the statement. The assumption here is that the current token is a function call, so we check if it’s legit and start digging.

Source

fn parse_function_call( &self, token: &Token, iter: &mut Peekable<Iter<'_, Token>>, ) -> Result<Vec<Arg>>

Parse a function call and its arguments. Handles nested function calls recursively, creating intermediate variables for inner call results.

Source

fn expect_token_type(&self, token: &Token, expected: TokenType) -> Result<()>

Check that a token has the expected type.

Source

fn next_tuple3<I, T>(iter: &mut I) -> Option<(T, T, T)>
where I: Iterator<Item = T>,

Get next 3 items from an iterator as a tuple.

Source

fn next_tuple4<I, T>(iter: &mut I) -> Option<(T, T, T, T)>
where I: Iterator<Item = T>,

Get next 4 items from an iterator as a tuple.

Auto Trait Implementations§

§

impl Freeze for Parser

§

impl RefUnwindSafe for Parser

§

impl Send for Parser

§

impl Sync for Parser

§

impl Unpin for Parser

§

impl UnwindSafe for Parser

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<T> ArchivePointee for T

§

type ArchivedMetadata = ()

The archived version of the pointer metadata for this type.
§

fn pointer_metadata( _: &<T as ArchivePointee>::ArchivedMetadata, ) -> <T as Pointee>::Metadata

Converts some archived metadata to the pointer metadata for itself.
§

impl<'a, T, E> AsTaggedExplicit<'a, E> for T
where T: 'a,

§

fn explicit(self, class: Class, tag: u32) -> TaggedParser<'a, Explicit, Self, E>

§

impl<'a, T, E> AsTaggedImplicit<'a, E> for T
where T: 'a,

§

fn implicit( self, class: Class, constructed: bool, tag: u32, ) -> TaggedParser<'a, Implicit, Self, E>

Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
§

impl<T> Conv for T

§

fn conv<T>(self) -> T
where Self: Into<T>,

Converts self into T using Into<T>. Read more
§

impl<T> Downcast for T
where T: Any,

§

fn into_any(self: Box<T>) -> Box<dyn Any>

Converts Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>, which can then be downcast into Box<dyn ConcreteType> where ConcreteType implements Trait.
§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Converts Rc<Trait> (where Trait: Downcast) to Rc<Any>, which can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
§

fn as_any(&self) -> &(dyn Any + 'static)

Converts &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Converts &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
§

impl<T> DowncastSend for T
where T: Any + Send,

§

fn into_any_send(self: Box<T>) -> Box<dyn Any + Send>

Converts Box<Trait> (where Trait: DowncastSend) to Box<dyn Any + Send>, which can then be downcast into Box<ConcreteType> where ConcreteType implements Trait.
§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

§

fn into_any_sync(self: Box<T>) -> Box<dyn Any + Send + Sync>

Converts Box<Trait> (where Trait: DowncastSync) to Box<dyn Any + Send + Sync>, which can then be downcast into Box<ConcreteType> where ConcreteType implements Trait.
§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Send + Sync>

Converts Arc<Trait> (where Trait: DowncastSync) to Arc<Any>, which can then be downcast into Arc<ConcreteType> where ConcreteType implements Trait.
§

impl<T> FmtForward for T

§

fn fmt_binary(self) -> FmtBinary<Self>
where Self: Binary,

Causes self to use its Binary implementation when Debug-formatted.
§

fn fmt_display(self) -> FmtDisplay<Self>
where Self: Display,

Causes self to use its Display implementation when Debug-formatted.
§

fn fmt_lower_exp(self) -> FmtLowerExp<Self>
where Self: LowerExp,

Causes self to use its LowerExp implementation when Debug-formatted.
§

fn fmt_lower_hex(self) -> FmtLowerHex<Self>
where Self: LowerHex,

Causes self to use its LowerHex implementation when Debug-formatted.
§

fn fmt_octal(self) -> FmtOctal<Self>
where Self: Octal,

Causes self to use its Octal implementation when Debug-formatted.
§

fn fmt_pointer(self) -> FmtPointer<Self>
where Self: Pointer,

Causes self to use its Pointer implementation when Debug-formatted.
§

fn fmt_upper_exp(self) -> FmtUpperExp<Self>
where Self: UpperExp,

Causes self to use its UpperExp implementation when Debug-formatted.
§

fn fmt_upper_hex(self) -> FmtUpperHex<Self>
where Self: UpperHex,

Causes self to use its UpperHex implementation when Debug-formatted.
§

fn fmt_list(self) -> FmtList<Self>
where &'a Self: for<'a> IntoIterator,

Formats each item in a sequence. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<T> LayoutRaw for T

§

fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError>

Returns the layout of the type.
§

impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
where T: SharedNiching<N1, N2>, N1: Niching<T>, N2: Niching<T>,

§

unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool

Returns whether the given value has been niched. Read more
§

fn resolve_niched(out: Place<NichedOption<T, N1>>)

Writes data to out indicating that a T is niched.
§

impl<T> Pipe for T
where T: ?Sized,

§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R
where Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R
where R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R
where R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
where Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
where Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
where Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
where Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
where Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R, ) -> R
where Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
§

impl<T> Pointable for T

§

const ALIGN: usize

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
§

impl<T> Pointee for T

§

type Metadata = ()

The metadata type for pointers and references to this type.
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
§

impl<T> Tap for T

§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
§

impl<T> TryConv for T

§

fn try_conv<T>(self) -> Result<T, Self::Error>
where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<T> Upcastable for T
where T: Any + Send + Sync + 'static,

§

fn upcast_any_ref(&self) -> &(dyn Any + 'static)

upcast ref
§

fn upcast_any_mut(&mut self) -> &mut (dyn Any + 'static)

upcast mut ref
§

fn upcast_any_box(self: Box<T>) -> Box<dyn Any>

upcast boxed dyn
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more